Proving Binomial Theorem using Mathematical Induction

The Binomial Theorem is the perfect example to show how different streams in mathematics are connected to one another: its coefficients have combinatorial roots and can be traced to terms in Pascal’s Triangle, and expansion of binomials to different orders of power can describe probability and combination distributions. The combinatorial proof as under requires no need for proving again, but after learning a method called Mathematical Induction from incessant internet browsing on a late Saturday night, I thought, why not give it a shot?

Mathematical Induction is a method of mathematical proof used to prove an expression true for all natural numbers. The steps are as under:

  1. State the proposition P(n) that needs proving.
  2. The Basis: Show P(n) is true, when n=1.
  3. The Inductive Step:
    1. Assume n=k
    2. If P(k) is true, show that P(k+1) is true
  4. If P(k+1) is true, therefore P(n) is true.

Binomial Theorem Proof w. steps 3 - Copy

(Side-note: It’s not everyday you get to use Q.E.D.)

Advertisements

2 comments on “Proving Binomial Theorem using Mathematical Induction

  1. oceanpig712 says:

    Hahahahahahaha I love the Side-Note part. Q.E.D. !! – Mana

  2. dsctmark says:

    This was more of a post focusing on induction (and using summation) than binomial theorem. Are there any good web programs/code that you can use to have your formulas online? MathML? Latex? All in all, good work. I look forward to reading about alien life.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s